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Abstract—A variety of chiral 3,4-dideoxy furanoid sugar amino acids have been synthesized, which were substituted at C6 with
different alkyl groups, such as methyl, benzyl, isopropyl and hydroxymethyl synthesized from their corresponding N,N-dibenz-
ylaminoaldehydes.
� 2004 Elsevier Ltd. All rights reserved.
Introduction of a stereogenic centre at the C6 position
of the amino terminus of furanoid amino acids gives rise
to an additional combinatorial site in these multifunc-
tional building blocks 1 that will not only help to induce
desired secondary structure in peptides, but will also
allow to mimic the side chains of natural amino acids
influencing the hydrophobicity/hydrophilicity of the
resulting peptidomimetic molecules.1 Development of a
robust synthetic strategy to construct these molecules
in enantiomerically pure form will allow their applica-
tion as dipeptide isosteres in peptidomimetic studies.
C7-Substituted pyranoid sugar amino acids based on a
tetrahydropyran framework have already been devel-
oped.2 Compounds with a methyl at C6 of 3,4-dideoxy
furanoid sugar amino acids have also been synthesized
and used in peptidomimetic studies by Koert et al.3

However, the reported procedures suffer from poor dia-
stereoselectivity leading to mixtures of isomers. Herein,
we describe an alternate method for the synthesis of
C6-substituted furanoid sugar amino acids. The process,
which uses chiral N,N-dibenzylaminoaldehydes and
glyceraldehyde acetonide as starting materials, is applied
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to the synthesis of a variety C6-substituted 3,4-dideoxy
furanoid sugar amino acids, (2R,5R,6S)-6-amino-2,5-
anhydro-3,4,6-trideoxy-aldonic acids 2 with 6-methyl
(a), 6-benzyl (b), 6-isopropyl (c) and 6-(CH2OBn) (d)
substituents.

The synthesis is outlined in Scheme 1. One of the start-
ing materials in this scheme was the commercially avail-
able (S)-N,N-dibenzylaminoaldehyde4 3a (R = Me) that
could also be prepared from LL-Ala.5 The second starting
material used was 3,4-O-isopropylidene-1,1-dibromo-
but-1-en-3,4-diol 46 prepared from (R)-glyceraldehyde
acetonide, which could be made easily in large quantities
by oxidative cleavage of 1,2:5,6-di-O-isopropylidene-DD-
mannitol using NaIO4.

7 Treatment of 3a at �78 �C with
the Li-acetylide, prepared in situ by reacting 4 with n-
BuLi in dry THF at �78 �C for 30 min and subsequently
at room temperature for an additional 30 min, gave the
expected adduct 5a8 as the major product in 81% yield
with excellent diastereoselectivity and, as expected, with
a 5R stereochemistry.4a,9

Hydrogenation of 5a using 20% Pd(OH)2–C as a cata-
lyst in MeOH reduced the triple bond and at the same
time also deprotected NBn2 to give a free amine,10 which
was reprotected using Boc2O to furnish 6a in 85% yield.8

Treatment of 6a with acid deprotected the acetonide
moiety giving the triol 7a in 95% yield. Selective sulfonyl-
ation of the primary hydroxyl group of 7a using 2,4,6-
triisopropylbenzenesulfonyl chloride (TrisCl) gave a
sulfonate intermediate that was treated with anhydrous
K2CO3 to carry out a facile intramolecular ring closure
reaction via an epoxide intermediate to get the tetrahy-
drofuran framework of 8a in 72% yield in two steps.11

Finally, a two-step oxidation process converted the
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primary hydroxyl group of 8a into an acid that was
treated with an excess of diazomethane in ether to get
the final product 2a12 in 84% yield.

Similarly, starting with N,N-dibenzylphenylalaninal 3b,
N,N-dibenzylvalinal 3c and N,N,O-tribenzylserinal 3d
compounds 2b, 2c and 2d, respectively, were synthesized
following Scheme 1.12
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